Science and Technology Concepts for Middle Schools™

Earth in Space

Student Guide and Source Book
NATIONAL SCIENCE RESOURCES CENTER
The National Science Resources Center (NSRC) is operated by the Smithsonian Institution and the National Academies to improve the teaching of science in the nation’s schools. The NSRC disseminates information about exemplary teaching resources, develops curriculum materials, and conducts outreach programs of leadership development and technical assistance to help school districts implement inquiry-centered science programs.

SMITHSONIAN INSTITUTION
The Smithsonian Institution was created by act of Congress in 1846 “for the increase and diffusion of knowledge. . . .” This independent federal establishment is the world’s largest museum complex and is responsible for public and scholarly activities, exhibitions, and research projects nationwide and overseas. Among the objectives of the Smithsonian is the application of its unique resources to enhance elementary and secondary education.

THE NATIONAL ACADEMIES
The National Academies are nonprofit organizations that provide independent advice to the nation on matters of science, technology, and medicine. The National Academies consist of four organizations: the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council. The National Academy of Sciences was created in 1863 by a congressional charter. Under this charter, the National Research Council was established in 1916, the National Academy of Engineering in 1964, and the Institute of Medicine in 1970.

STC/MS PROJECT SPONSORS
National Science Foundation
Bristol-Myers Squibb Foundation
Dow Chemical Company
DuPont Company
Hewlett-Packard Company
The Robert Wood Johnson Foundation
Carolina Biological Supply Company
STC/MS Project Advisors for Earth in Space

Tom Albert, Teacher-in-Residence, NASA Goddard Space Flight Center
Cassandra Coombs, Director, NASA Southeast Regional Clearinghouse, College of Charleston
Stanley Doore, Meteorologist (retired), National Weather Service, National Oceanic and Atmospheric Administration
Ann Dorr, Teacher (retired), Fairfax County, Virginia, Public Schools; Board Member, Minerals Information Institute
Andrew Fraknoi, Astronomical Society of the Pacific; Professor, Department of Astronomy, Foothills College
Jackie Faillace Getgood, Supervisor of Mathematics, Spotsylvania County, Virginia, Public Schools
Marvin Grossman, Associate Director, Project ARIES, Harvard University, Harvard-Smithsonian Center for Astrophysics
Patricia Hagan, Middle School Science Specialist, Montgomery County, Maryland, Public Schools
Matthew Holman, Astrophysicist, Harvard-Smithsonian Center for Astrophysics
Brian Huber, Micropaleobiologist, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution
Ian MacGregor, Director (retired), Division of Earth Sciences, National Science Foundation
Brian Marsden, Senior Astrophysicist, Associate Director, Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics
Timothy McCoy, Meteorite Specialist, Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution
Stephanie Stockman, Planetary Geologist, Science Systems and Applications, Inc.; NASA Goddard Space Flight Center
David Williams, Planetary Scientist, National Space Science Data Center, NASA Goddard Space Flight Center
James Zimbelman, Planetary Geologist, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution
Community leaders and state and local school officials across the country are recognizing the need to implement science education programs consistent with the National Science Education Standards as we strive to attain the important national goal of scientific literacy for all students in the 21st century. The Standards present a bold vision of science education. They identify what students at various levels should know and be able to do. They also emphasize the importance of transforming the science curriculum in a way that encourages students to engage actively in scientific inquiry—thereby developing conceptual understanding as well as problem-solving skills.

We believe that the development of effective, standards-based, inquiry-centered curriculum materials is a key step in achieving scientific literacy. The National Science Resources Center (NSRC) has responded to this challenge through the Science and Technology Concepts for Middle Schools (STC/MS) program. With the publication of the STC/MS modules, schools now have a rich set of curriculum resources for middle school students that embody scientific inquiry and hands-on learning.

Since its founding in 1985, the NSRC has made many contributions to the goal of achieving scientific literacy for all students. In addition to developing the Science and Technology for Children (STC) program—an inquiry-centered science curriculum for grades K through 6—the NSRC has been active in disseminating information on science teaching resources, in preparing school district leaders to spearhead science education reform, and in providing technical assistance to school districts. These programs have had an important impact on science education throughout the country.

The transformation of science education is a challenging task that will continue to require the kind of strategic thinking and insistence on excellence that the NSRC has demonstrated in all of its curriculum development and outreach programs. Its sponsoring organizations, the Smithsonian Institution and the National Academies, take great pride in the publication of this exciting new science program for middle schools.

J. DENNIS O’CONNOR
Former Under Secretary for Science
Smithsonian Institution

BRUCE M. ALBERTS
President
National Academy of Sciences
Preface

The National Science Resources Center’s (NSRC) mission is to improve the learning and teaching of science for K-12 students. As an organization of two prestigious scientific institutions—the National Academies and the Smithsonian Institution—the NSRC is dedicated to the establishment of effective science programs for all students. To contribute to that goal, the NSRC has developed and published two comprehensive, research-based science curriculum programs: the Science and Technology for Children® (STC®) program for students in grades K-6, and the Science and Technology Concepts for Middle Schools™ (STC/MS™) program for students in grades 6-8.

The STC/MS curriculum project was launched in 1997. The overall design of the instructional materials and the process by which they were developed are based on a foundation of research. The STC/MS courses were informed by research on cognitive development, teaching, learning, assessment, and the culture of schools.

The STC/MS curriculum materials consist of eight courses. Through these courses, students build an understanding of important concepts in life, earth, and physical sciences and in technology; learn critical-thinking skills; and develop positive attitudes toward science and technology. The STC/MS program materials are designed to meet the challenge of the National Science Education Standards to place scientific inquiry at the core of science education programs. Specifically, the National Science Education Standards state that “...students in grades 5–8 should be provided opportunities to engage in full and partial inquiries.... With an appropriate curriculum and adequate instruction, middle school students can develop the skills of investigation and the understanding that scientific inquiry is guided by knowledge, observations, ideas, and questions.” STC/MS also addresses the national technology standards published by the International Technology Education Association.

Informed by research and guided by standards, the design of the STC/MS courses addresses four critical goals:

- Use of effective student and teacher assessment strategies to improve learning and teaching.
- Integration of literacy into the learning of science by giving students the lens of language to focus and clarify their thinking and activities.
- Enhanced learning using new technologies to help students visualize processes and relationships that are normally invisible or difficult to understand.
- Incorporation of strategies to actively engage parents to support the learning process.

The research and development process has included trial teaching and field-testing nationwide with geographically and ethnically diverse student populations, as well as the active involvement of the scientific and engineering communities. This process has ensured that the learning experiences contained in each module reflect current
scientific thinking, and are pedagogically sound and developmentally appropriate for students.

The NSRC is grateful to the Smithsonian Institution and the National Academies for their overall project support and for sharing their scientific expertise—critical for the development of world-class products. Support for project staff and the associated work to produce and publish these materials has been made possible by the National Science Foundation, our publisher Carolina Biological Supply Company, and numerous private foundations and corporations, including Bristol-Myers Squibb Foundation, The Dow Chemical Company Foundation, DuPont, the Hewlett-Packard Company, and The Robert Wood Johnson Foundation.

The NSRC would like to acknowledge Douglas M. Lapp, former NSRC Executive Director, for his vision and leadership on the STC/MS project. The STC/MS development staff, under the direction of Kitty Lou Smith, and the publications staff, under the direction of Heather Dittbrenner, working in cooperation with Dorothy Sawicki, Managing Editor for the first four modules, and Linda Griffin Kean, Managing Editor for the second four modules, are to be commended for their creativity, dedication, and commitment to develop these excellent curriculum materials that will be used to improve the learning and teaching of middle school science in the nation’s schools.

We welcome comments from students and teachers about their experiences with the STC/MS program materials and recommendations for ways the STC/MS courses can be improved.*

Sally Goetz Shuler
Executive Director
National Science Resources Center

*Please forward your feedback and suggestions to STC/MS Program, National Science Resources Center, Smithsonian Institution, Washington, DC 20560-0403.
Acknowledgments

The National Science Resources Center gratefully acknowledges the following individuals and school systems for their assistance with the national field-testing of Earth in Space:

Schenectady City School District, Schenectady, New York
Site Coordinator: Arden Rauch
- Claire Godlewski, Teacher, Oneida Middle School
- Danielle Hartkern, Teacher, Central Park Middle School
- Ed Pfeifer, Teacher, Schenectady High School

Spotsylvania County School District, Spotsylvania, Virginia
Site Coordinator: Katie Wallet, Supervisor of Science
- Mary Hardy, Teacher, Ni River Middle School

Bozeman Public School District, Bozeman, Montana
Site Coordinator: Myra Miller, Keystone Project Director
- Sheri Konietzko, Teacher, Sacajawea Middle School
- Ana Morris, Teacher, Sacajawea Middle School
- Joann Watson, Teacher, Chief Joseph Middle School

Anderson Oconee Pickens Hub, Clemson, South Carolina
Site Coordinator: Elizabeth Edmondson
- David Pepper, Teacher, Seneca Middle School, Seneca
- Alan Weekes, Teacher, Pickens Middle School, Pickens
- Ali Wienke, Teacher, Wren Middle School, Piedmont

Fort Bend Independent School District, Missouri City, Texas
Site Coordinator: Mary Ingle, Director of Secondary Science
- Tom Grubbs, Teacher, Lake Olympia Middle School
- Kirlew Matthie, Teacher, Lake Olympia Middle School
- Scott McKie, Teacher, Lake Olympia Middle School

Schenectady City School District, Schenectady, New York
Site Coordinator: Arden Rauch
- Claire Godlewski, Teacher, Oneida Middle School
- Danielle Hartkern, Teacher, Central Park Middle School
- Ed Pfeifer, Teacher, Schenectady High School

Spotsylvania County School District, Spotsylvania, Virginia
Site Coordinator: Katie Wallet, Supervisor of Science
- Mary Hardy, Teacher, Ni River Middle School

The NSRC thanks the following individuals for their assistance during the development of Earth in Space:

- Dennis Schatz, Associate Director, Pacific Science Center, Seattle, Washington
- Rose Steinet, Photo Librarian, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D.C.

The NSRC also thanks the following individuals from Carolina Biological Supply Company for their contribution to the development of this module—

- Dianne Gerlach, Director of Product Development
- Bobby Mize, Department Head, Publications
- David Heller, Product Developer
- Jennifer Manske, Publications Manager
- E. Alan Scott, Department Head, Earth Science/Anthropology
- Gary Metheny, Editor
- 29 & Company, Design
Finally, the NSRC appreciates the contribution of its STC/MS project evaluation consultants—
Center for the Study of Testing, Evaluation, and Education Policy (CSTEEP), Boston College
Joseph Pedulla, Director, CSTEEP
Contents

Part 1 Sun-Earth-Moon System

Lesson 1 Thinking About Earth as a Planet 2
 Inquiry 1.1 Examining Our Ideas About Space 4
 Astronomy: Looking Back 9

Lesson 2 Introducing the Sun-Earth-Moon System 12
 Inquiry 2.1 Demonstrating What We Know About the Sun-Earth-Moon System 14
 Inquiry 2.2 Scaling the Sun-Earth-Moon System 15
 Folklore: Making Sense of the Skies 16
 Scaling the Sun-Earth-Moon System 18

Lesson 3 Tracking Shadows 22
 Inquiry 3.1 Analyzing Shadows 24
 Solar Noon 26
 Inquiry 3.2 Collecting Computerized Shadow Data 27
 Inquiry 3.3 Modeling Winter and Summer Shadows 31
 Inquiry 3.4 Analyzing the Effects of Earth's Rotation 34
 How To View the Sun Safely 36
 The Anasazi: Ancient Skywatchers 40

Lesson 4 Seasons on Earth 42
 Inquiry 4.1 Investigating Seasons on Earth 45
 Inquiry 4.2 Observing the North Star 50
 Inquiry 4.3 Investigating Seasonal Variations at Different Latitudes 51
 The Reasons for Seasons 54
 Steering by the Stars 58

Lesson 5 Investigating Lunar Phases 62
 Inquiry 5.1 Investigating the Moon's Reflected Light 64
 Inquiry 5.2 Modeling Lunar Phases 67
 Apollo 11 Lands on the Moon: A NASA Log 70

Lesson 6 Solar and Lunar Eclipses 74
 Inquiry 6.1 Investigating Lunar and Solar Eclipses 76
 Inquiry 6.2 Analyzing the Geometry of Eclipses 78
 Eclipses 81
 Pinhole Projectors 85
<table>
<thead>
<tr>
<th>Lesson 7</th>
<th>The Sun as an Energy Source</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 7.1</td>
<td>Investigating the Effects of Radiant Energy</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Distance and Light</td>
<td>92</td>
</tr>
<tr>
<td>Inquiry 7.2</td>
<td>Designing an Energy Investigation</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Using Eclipses To Study Solar Wind</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Our Sun’s Energy</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 8</th>
<th>Sunspots and Space Weather</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 8.1</td>
<td>Projecting Images of the Sun</td>
<td>104</td>
</tr>
<tr>
<td>Inquiry 8.2</td>
<td>Tracking Sunspots</td>
<td>108</td>
</tr>
<tr>
<td>Inquiry 8.3</td>
<td>Analyzing Long-Term Sunspot Data</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Galileo’s Discoveries</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Little Ice Age</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Tree Rings Hold Solar Secrets</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Auroras</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 9</th>
<th>Sun-Earth-Moon System Assessment</th>
<th>122</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fast Plants: Ready for Liftoff!</td>
<td>126</td>
</tr>
</tbody>
</table>

Part 2
Solar System

<table>
<thead>
<tr>
<th>Lesson 10</th>
<th>Anchor Activity: Space Exploration</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 10.1</td>
<td>Beginning the Anchor Activity</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Anchor Activity Guidelines</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Mission Introduction: History of Space Exploration</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Top 10 Scientific Discoveries Made During Apollo Exploration of the Moon</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 11</th>
<th>The Solar System: Designing a Scale Model</th>
<th>146</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 11.1</td>
<td>Designing a Model Solar System</td>
<td>147</td>
</tr>
<tr>
<td>Inquiry 11.2</td>
<td>Using a Scale Factor</td>
<td>148</td>
</tr>
<tr>
<td>Inquiry 11.3</td>
<td>Building a Scale Model of the Solar System</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>The Orrery: A Model of the Solar System</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>The Astrarium: A Clock Without a Tock</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Mission: Mercury</td>
<td>154</td>
</tr>
</tbody>
</table>
Lesson 12 Impact Craters 160
 Inquiry 12.1 Making General Observations About Impact Craters 163
 Craters in the Making 165
 Inquiry 12.2 Investigating Impact Craters 167
 Mission: Venus 170

Lesson 13 Surface Features 174
 Inquiry 13.1 Investigating Planetary Processes 180
 Wind Erosion 182
 Water Erosion 185
 Tectonics 187
 Volcanism 189
 Wet Like Earth? 191
 Mission: Mars 194

Lesson 14 Surface Gravity 200
 Inquiry 14.1 Analyzing Weight on Each Planet 202
 Inquiry 14.2 Investigating Mass and Weight 203
 Mass and Weight: What's the Difference? 206
 Mission: Jupiter 210

Lesson 15 Gravity and Orbital Motion 216
 Inquiry 15.1 Gravity's Effect on Objects in Motion 218
 Inquiry 15.2 Testing Balanced and Unbalanced Forces 219
 Inquiry 15.3 Observing Planetary Motion 221
 Stars Wobble 223
 Inquiry 15.4 Investigating the Effect of Planetary Mass on a Moon’s Orbit 223
 Heavy Thoughts 226
 Mission: Saturn, Uranus, and Neptune 231

Lesson 16 Gravity and Tides 244
 Inquiry 16.1 Analyzing Tidal Data 246
 Marching to the Beat of Tides 252
 Can Water Fall Up? 255
 Mission: Pluto 260
Part 3 Earth’s History as a Planet

Lesson 17 Asteroids, Comets, and Meteoroids
- Inquiry 17.1 Examining Asteroids
- Inquiry 17.2 Studying Asteroid Impact
- Asteroids, Comets, and Meteoroids
- A Fiery Necklace
- Mission: Earth
- The Space Name Game

Lesson 18 Fossils as Evidence of Asteroid Impact
- Inquiry 18.1 Excavating Fossils
- Inquiry 18.2 Examining the Relative Ages of Fossils
- Inquiry 18.3 Modeling Molds and Casts
- Fossils
- The Great Asteroid and the End of the Dinosaurs
- The Age of Planets: Dating Rocks

Lesson 19 Comparing Planets: Is Earth Unique?
- Inquiry 19.1 Comparing the Planets
- Climate’s Link to Life
- Little Things Mean a Lot
- Science Fiction—Science Fact

Lesson 20 Exploring Space Technology
- Inquiry 20.1 Researching a Space Spinoff Product
- Star Guidelines
- Spinoffs From Space

Lesson 21 Presenting the Space Technology And Research (STAR) Posters
- Inquiry 21.1 Communicating Our Findings
- Sugars in Space

Lesson 22 Solar System Assessment

Glossary
Index
Photo Credits