amber: A type of fossil that forms when partial or complete insects and small arthropods become embedded in tree resin; fossilizes when the resin is buried and hardens into a clear shell. See also fossil.

angle of separation: Angle between lines originating from the eye of the observer toward two objects, such as a star—the Sun—and the horizon. See also horizon.

annular eclipse: A type of solar eclipse in which the Moon is too far from Earth to cover the Sun completely, so the outer edge of the Sun is seen as a ring. See also solar eclipse.

apparent: Seeming real or true; for example, the Sun’s apparent motion across the sky is due to Earth’s rotation, not the Sun’s motion.

asteroid: A small, mostly rocky solar system object that orbits independently around the Sun; minor planet. See also asteroid belt.

asteroid belt: A large group of asteroids that orbits the Sun between Mars and Jupiter. See also asteroid.

astronomer: A scientist who studies the stars, planets, and other objects in space. See also astronomy.

astronomical unit: A unit of measure equal to the average distance between Earth and the Sun, about 150 million kilometers (93 million miles); abbreviated AU.

astronomy: The branch of science that studies the stars, planets, and other objects in space. See also astronomer.

atmosphere: The mixture of gases that surrounds a planet or moon.

aurora: Light display that occurs mostly near the poles when gases in Earth’s atmosphere glow when hit by charged particles carried by solar winds. See also solar wind.

axis (plural: axes): An imaginary line that runs through the middle of an object (for example, from pole to pole) around which that object rotates; a line at the side or bottom of a graph.

basin: An area where rock dips toward a central point or depression, as in a crater. See also crater.

cast: Type of fossil that forms when sand, minerals, or other matter fill a cavity-shaped mold over time and then harden, forming a replica of the original organism. See also fossil.

celestial: Of or relating to things in the heavens.

chromosphere: The layer of the Sun’s atmosphere below the corona. See also corona.

coma: The part of a comet that surrounds the nucleus and that is made of gas and dust. See also comet.

comet: A mass of frozen gas, cosmic dust, ice crystals, and organic material whose orbit around the Sun takes it outside the solar system.

constellation: An observed pattern of stars.

core: The center of a planet, star, or moon.

corona: The outer layer of the Sun’s atmosphere that becomes visible from Earth during a total solar eclipse.

crater: A bowl-shaped pit on a planet, moon, or asteroid formed by the impact of an object; also formed by volcanoes. See also basin.

crescent: The phase of the Moon in which only a curved edge of the Moon’s side that faces Earth is illuminated; occurs between a new moon and a quarter moon. See also phase; waxing crescent; waning crescent.

day: The time it takes a planet to complete one rotation on its axis; one Earth day is approximately 24 hours long. See also day.

degree: A unit for measuring angles and arcs; one degree equals $\frac{1}{360}$ of a circle.
galaxy: A large system of dust, gas, stars, and other celestial bodies that has a particular shape.

gaseous planets: Planets composed of compounds that under normal Earth conditions would be gases; includes Jupiter, Saturn, Uranus, and Neptune.

gibbous moon: The phase of the Moon in which three-fourths of the Moon's side that faces Earth is illuminated; occurs between a quarter moon and full or new moon. See also phase.

gravity: A force of attraction between two objects; the strength of the force is due to the mass and distance between the two objects.

gravity assist: A technique that uses the pull of a planet's gravity to change a spacecraft's speed and direction.

greenhouse effect: The trapping of heat by a planet's atmosphere.

greenhouse gases: The gases in a planet's atmosphere, such as water vapor and carbon dioxide, that absorb energy radiated from the planet and prevent its escape into space.

Earth-centered: A description of the universe in which it was believed that all the planets, stars, Moon, and Sun revolve around Earth.

eclipse: The complete or partial block of the Sun or Moon's light that occurs when the Moon passes between the Sun and Earth and casts a shadow on Earth, or when the Moon enters the shadow of Earth.

ecliptic: The apparent path of the Sun, planets, and Moon in the sky as seen from Earth; the plane along which the Sun, planets, Moon, and other solar system objects orbit.

ellipse: An oval-shaped closed curve; the shape of a planet's orbit.

equinox: Either of two times of the year (fall or spring) during a planet's orbit when the north and south poles are equidistant from the Sun, causing day and night to be equal in length.

erosion: The process by which terrestrial planetary materials are broken down and moved from place to place, for example, by wind and water.

first quarter: The phase of the Moon in which only the right half of the Moon's side is that faces Earth is illuminated; occurs when the Moon, Earth, and Sun form a 90° angle. See also phase; third quarter.

flyby: Method astronomers use to observe a planet or moon whereby a spacecraft “flies by” the planet or moon, taking pictures of it and gathering other scientific data as it does.

fossil: The preserved remains or impressions of organisms of Earth's geological past. See also amber; cast; mold.

full moon: The phase of the Moon in which the entire side of the Moon that faces Earth is fully illuminated; occurs when Earth is between the Moon and Sun. See also phase.

horizon: The plane that extends from one's eye to the edge of Earth; the apparent connection between Earth and the sky.

Hubble Space Telescope: A telescope that orbits Earth 600 km above the surface.

inertia: The tendency of an object to remain either at rest or in motion unless acted on by an outside force. See also Law of Inertia.

lander: A spacecraft that lands on a planet to gather data directly from the planet’s surface.

landform: A physical feature of a planet's surface, such as a mountain, plain, or valley.
latitude: An angular distance on a globe that runs parallel (east and west) to the equator; measured in degrees north and south. See also longitude.

Law of Inertia: Law stating that a body in motion tends to travel in a straight line unless an outside force disturbs it. See also inertia.

Law of Universal Gravitation: Law stating that any two objects in the universe have gravity and will attract each other, and that attraction depends on how much mass each object has and their distance from each other. See also gravity.

longitude: An angular distance on a globe that runs perpendicular (north and south) to the equator; measured in degrees east and west. See also latitude.

lunar: Of or relating to the Moon.

lunar eclipse: The blocking of sunlight to the Moon; occurs during a full moon, when Earth's shadow lands on the Moon. See also eclipse.

maria: Dark, flat, low-lying regions on the Moon's surface.

mass: The total amount of matter in an object; not dependent upon gravitational pull. See also weight.

meteor: The streak of light that is produced when a meteoroid burns as it enters an atmosphere. See also meteoroid; meteorite.

meteorite: A meteoroid that strikes a planet, moon, or asteroid. See also meteor; meteoroid.

meteoroid: A solid object moving in interplanetary space, distinguished from asteroids and planets by its smaller size. See also asteroid; meteor; meteorite.

model: A representation that is used to study objects, ideas, or systems that are too complex, distant, large, or small to study easily firsthand.

mold: A fossil type that is an impression of a shell, bone, tooth, or other body part left in the rock after the organism is covered by soft material. See also fossil.

moon: A rocky object that orbits a planet; a natural satellite.

NASA: The National Aeronautics and Space Administration, an organization that oversees the United States' space program, established in 1958.

neap tide: Lower-than-normal high tide that occurs when the first or third quarter moon, Earth, and the Sun are at right angles to each other and the gravitational force of the Sun partially offsets the gravitational force of the Moon. See also spring tide; tide.

nebula: A concentration of dust and gas in space.

new moon: A phase of the Moon in which the side of the Moon that faces Earth is not illuminated at all; occurs when the Moon is between Earth and the Sun.

nuclear fusion: The reaction by which hydrogen gas changes into helium gas and releases energy in the form of heat and light.

nucleus: The main part of a comet, which is made of ice, gas, and dust.

orbit: (noun) The curved path of one object, such as a planet or moon, around a central object, such as a star or planet; (verb) to move in a circular or elliptical path around a central object. See also revolve.

orbital period: The time that it takes an object to orbit another object one complete time. See also period of revolution.

orbiter: A spacecraft that studies a planet by orbiting it rather than by flying past it.
paleontologist: Scientist who studies life forms of the past. See also fossil.
partial lunar eclipse: A lunar eclipse in which part of the full moon’s illuminated disk becomes temporarily darkened by Earth’s shadow; occurs when the Moon moves partially into the umbra of Earth’s shadow. See also eclipse; lunar eclipse.
partial solar eclipse: A solar eclipse in which the new moon temporarily blocks part of the Sun’s disk; occurs when the new moon, Earth, and the Sun are not completely aligned and the umbra of the Moon’s shadow falls into space and viewers on Earth are located in the penumbra of the Moon’s shadow. See also eclipse; solar eclipse.
penumbra: The lighter, outer part of a shadow cone. See also umbra.
penumbral lunar eclipse: Lunar eclipse—barely visible from Earth—that occurs when the new moon moves into the penumbral shadow of Earth’s shadow. See also eclipse; lunar eclipse.
period of revolution: The time it takes an object to orbit another object one complete time. See also orbital period.
period of rotation: The time it takes an object to spin on its axis in one complete rotation. See also rotation.
petrified wood: Fossil originally of wood in which the wood has been replaced by some mineral. See also fossil.
phase: Any of eight various stages in which the Moon appears to change its shape.
photosphere: The layer of the Sun’s atmosphere below the chromosphere that provides the sunlight that reaches Earth. See also chromosphere; corona.
plane: A flat surface; an imaginary surface along which the planets orbit. See also ecliptic.
planet: A massive, usually spherical space object that orbits a star and shines by reflecting the star’s light.
Polaris: The current star to which the North Celestial Pole of Earth points; also called the “North Star.”
probe: Instrument that makes observations and takes measurements such as atmospheric content, turbulence, temperature, particle size, and radiation either on a planet’s surface or in its atmosphere.
prominence: A loop of gas that comes from the Sun’s surface, linking parts of sunspot regions. See also sunspot.
radiation: The process by which energy is transferred from one object, such as the Sun, to another object, such as a planet, without the space between them being heated.
rays: Spoke-like patterns of ejected material that radiate from a crater.
revolution: The movement of one object around a central object. See also revolve.
revolve: To move in a curved path or orbit. See also orbit; revolution.
rotate: To turn or spin around a central point or axis. See also axis; rotation.
rotation: The movement of one object as it turns or spins around a central point or axis. See also axis; rotate.
satellite: A natural (for example, the Moon) or artificial (for example, the Hubble Space Telescope) object that orbits another object in space.
scale: The ratio between the measurements on a map or model and the actual measurements of an object.
scale factor: A method for reducing all measurements by the same amount to achieve the measurement of the scale model.
season: One of four natural parts of the year on Earth, including spring, summer, autumn (or fall), and winter; seasons vary from planet to planet and depend on the planet's rotation on its axis and revolution around the Sun.

shadow: An area where light is blocked by an object.

solar eclipse: The blocking of the Sun's light that occurs during a new moon when the Moon's shadow falls on Earth. See also eclipse.

solar energy: Energy from the Sun.

solar flare: A sudden brightness near a sunspot; explosion of gas from the Sun's surface. See also sunspot.

solar noon: Time of day when the Sun reaches its highest point in the sky for a given place on Earth.

solar system: A star with planets and other objects in orbit around it; our solar system is made up of the Sun, nine planets, asteroids, meteoroids, comets, and other space objects.

solar wind: A stream of electrically charged particles (primarily protons and electrons) that flow outward from the Sun's corona.

solstice: Either of two times of the year during which the north pole (around June 21) or the south pole (around December 21) is most directed toward the Sun.

space probe: An unmanned spacecraft that collects information in space.

space shuttle: A reusable spacecraft designed to transport astronauts, materials, and satellites to and from Earth's orbit.

space weather: The conditions on the surface of the Sun that ultimately affect Earth and its atmosphere.

spinoff: A product or process that was originally created for the space program that has been adapted for use on Earth.

spring tide: Higher-than-normal high tide during the month that normally occurs during a new and full moon when the Sun, Moon, and Earth are in line and their gravitational forces are combined. See also neap tide.

star: A sphere of hot glowing gases that releases energy in the form of heat and light. See also Sun.

Sun: The star in the center of our solar system around which Earth and eight other planets revolve. See also planet.

sunspot: A relatively darker, cooler area on the Sun's surface that emits charged particles.

technology: The application of science principles in processes, tools, and devices.

tectonics: The change in a surface of a planet due to internal forces.

terrestrial: Of or having to do with solid rock; name given to the four inner planets (Mercury, Venus, Earth, and Mars). See also planets.

third quarter: The phase of the Moon in which only the left half of the Moon's side that faces Earth is illuminated; occurs when the Moon, Earth, and the Sun form a 90° angle. See also phase; first quarter.

tide: Periodic rising and falling of the surface level of an ocean and other waters resulting from the gravitational attraction of the Moon and the Sun on the solid and liquid surfaces of Earth. See also neap tide; spring tide.

total lunar eclipse: Eclipse in which the entire disk of the full moon is covered by the Earth's umbra. See also eclipse.

total solar eclipse: Eclipse visible on Earth from inside the Moon's umbra; occurs when the Sun's entire disk—except for the corona—is blocked by the new moon. See also eclipse.
umbra: The inner, darker part of a shadow. See also penumbra.

universe: The entirety of everything that is known to exist in space.

velocity: Speed and direction that an object travels over a specified distance during a measured amount of time; rate of motion.

volcano: A landform, usually cone shaped, produced by a collection of erupted material around a vent, or opening, in the surface of a planet or moon and through which gas and erupted material pass.

waning crescent: Phase of the Moon in which a narrow strip of the Moon’s lighted hemisphere is visible from Earth; shaped like a crescent; light is on the left; occurs before a new moon. See also phase.

waning gibbous: Phase of the Moon in which the lighted portion of the Moon’s side that faces Earth is getting smaller; occurs after a full moon. See also phase.

waxing crescent: Phase of the Moon in which a narrow strip of the Moon’s lighted hemisphere is visible from Earth; shaped like a crescent; light is on the right; occurs after a new moon. See also phase.

waxing gibbous: Phase of the Moon in which the lighted portion of the Moon’s side that faces Earth is getting larger; occurs before a full moon. See also phase.

weight: A measure of the force of gravity on an object.

year: The time it takes a planet to complete one revolution around the Sun; Earth’s year is 365 ¼ days long. See also day.
Index

A
Acheron Fossae (Mars), 187
A'Hearn, Michael F., 289
alarms, 331
Alaska, 60, 120–121, 315
Aldrin, Edwin (Buzz), 70–73
Alvarez, Luis, 307
Alvarez, Walter, 307
Amaterasu (Sun goddess), 16–17
amber fossils, 302
Ambrose, Valerie, 196
Anasazi, 40–41
Anchor Activity (space exploration), 130–145
beginning, 132–133
guidelines, 134–136
angle of separation, 28–30
between North Star and horizon, 50, 60
and seasons, 52, 54–55
Anningan (Moon god), 16
anorthosites, 145
Antarctica, 284, 286–287, 318
Antoniadi, Eugenious, 154
Apollo missions, 139–140, 144–145, 169, 323, 329
Apollo 11, 12, 70–73
Apollo 13, 141
Apollo-Soyuz Project, 143
Apollo Telescope Mount, 141
Archosaurs, 304
Aristotle, 85
Arizona, 301
Armstrong, Neil, 70–73, 323
Asaro, Frank, 307
Asimov, Isaac, 319, 321
asteroid(s), 162, 268, 272–273. See also specific asteroid
definition of, 272
discovery of, 289
examining, 270
formation of, 146
naming of, 289
asteroid belt, 272
asteroid impacts. See also impact
craters and dinosaur
extinction, 290–291, 305–308
fossils as evidence of, 290–311
studying, 270–271
Asteroids: Deadly Impact (video), 270
astrarium, 153
astrology, 9
astronauts, 137–143. See also specific astronaut
astronomical tools, 153
astronomy, 2, 9–11
atmosphere, 282
Jupiter, 211
Mars, 101, 182, 183, 193, 195–196
Neptune, 238
other planets, 101
Uranus, 237
Venus, 101, 171, 182, 183
aurora(s), 109, 120–121
aurora australis, 120–121
aurora australis, 120–121
Australia, 142, 262, 280, 310–311
Autumn. See fall
Aztec mythology, 116
B
balance, 206–207
balloon, water-filled, 221–222, 230, 245
barnacles, 254
Barringer Meteor Crater (Arizona), 161, 167, 270
Big Dipper (constellation), 58, 60
binoculars, viewing Sun with, 38, 103–107
biological clocks, 253–254
biosphere, 282
bone, dinosaur, 293, 304
Bopp, Tom, 268
Boyce, Charles, 152
Brahe, Tycho, 10
Brand, Vance, 143
Brassica rapa, 126–127
breccias, 145
diastasis, 295
Buie, Marc, 264
C
calendars, natural, 4, 19–20, 22, 40–41, 153, 253
Callisto (moon), 114, 162, 214
Caloris Basin (Mercury), 158
Canada, 109, 121, 255
Cape Canaveral (Florida), 138
carbon, 119
carbon dating, 309–310
carbon dioxide, 284, 317–318
Carmenta Farra (Venus), 189
Carrington, Richard, 120
casts (fossils), 299–301
Cavosie, Aaron, 311
celestial bodies, naming of, 289
celestial navigation, 58–61
Celestial Pole
 North, 50, 58, 60
 South, 50
cephalopod, 293
Ceres (asteroid), 273
Chaco Canyon, 40–41
Challenger space
 shuttle, 130, 142
Charlesworth, Clifford
 E., 70
Charon (moon), 2, 262–264
Chicxulub (Mexico), 305, 308
Chinese mythology, 17
chlorofluorocarbons
 (CFCs), 284
chromosphere, 117
Chryse Basin (Mars), 186
cirrus clouds, 282
Clarke, Arthur, 321
clock, 315–318. See
 also atmosphere;
 weather
Earth, 100–101,
 282, 284, 285,
 315–318
 and life on Earth,
 315–319
other planets, 101,
 315, 317–318
clocks
 astrarium, 153
 biological, 253–254
clouds, 282, 285
Collins, Michael, 12,
 70–73
Columbia (Moon
 orbiter), 12
Columbia space shut-
 tle, 127
comet(s), 268, 274,
 277–279. See also
 specific comet
 ancient observations
 of, 10
discovery and nam-
 ing of, 289
formation of, 146
parts of, 274
Comet Hale-Bopp,
 268, 274
Comet Halley, 41, 289
Comet Shoemaker-
 Levy 9, 276–280
craters. See impact
 craters
crescent moon, 68–69
crimson stem, 294
corona, solar, 96–97,
 117
coronal graph, 97
cosmic rays, 119
cosmonauts, 137
crabs, 253
distances, 309–310
day, length of, 4, 20,
 56–57
deforestation, satellite
 images of, 287
dead, extinction of,
 290–291,
 305–308
diamond ring effect,
 74
Dione (moon), 234
discs, 329–330
dust clouds, sugar
 molecules in, 338–339
Eagle (moon landing
 craft), 70–73, 323
Earth, 2–11, 141,
 281–288. See also
 Sun-Earth-Moon
 system
 age of, 310
atmosphere, 54–55,
 99–101, 182,
 281–282,
 284–287, 312
axis, tilt of, 42–44,
 54–57
climate, 100–101,
 282, 284–285,
 315–318
curved space, theory
 of, 230
Curie, Marie, 196
Curtin University,
 311
day, length of, 4, 20,
 56–57
date, radiometric,
 309–310
de Dondi, Giovanni,
 153
deforestation, satellite
 images of, 287
disk, 329–330
dust clouds, sugar
 molecules in, 338–339
Dione (moon), 234
dinosaurs
 extinction of,
 290–291,
 305–308
dois, Stephen, 319
dominican republic,
 302
drills, 329–330
distance, and light, 92
Dole, Stephen, 319
dominican republic,
 302
drills, 329–330
dust clouds, sugar
 molecules in, 338–339
gravity of, 209,
 226–228
Greek philosophy
 on, 10
impact craters on,
 160–161, 167,
 290, 308
life on, 315–320
magnetic field, 97,
 120–121
moon of (See Moon
 [Earth's])
NASA program
 observing, 282–287
ocean processes, 285
orbit, 20, 54
orbital speed, 228
polar ice caps, 281, 284
rotation of, 20, 34–35
rotational period, 4, 20, 56, 320
seasons on, 42–61
(See also specific season)
surface features of, 174, 176–179
tidal effects on Moon, 258
Earth in Space Anchor Activity, 134
Earth Observing System (EOS) satellites, 282–287
Earth System Enterprise (ESE), 282–287
eclipses, 78–84. See also lunar
eclipses; solar
eclipses
studying solar wind with, 95–97
ecliptic, 52, 57
Einstein, Albert, 230, 289
ellipse, 54, 82
El Niño, 285
Enceladus (moon), 187
energy, solar. See solar energy
energy detector. See radiometer
energy investigation, designing, 93–94
equator, 56
erosion modeling, 180–181
water, 185–186
wind, 182–184
Europa (moon), 114, 214, 338
European Space Agency, 260
Explore the Planets (software), 217, 270
eye damage, from looking directly at Sun, 37
F
Fabricius, Johannes, 116
fall, 42, 56–57
Fast Plants, 126–127
faulting, 179, 187–188
filters, Sun, 38
first quarter moon, 68
tidal effect of, 257
fixed stars, 10
flyby missions, 156
Foale, Michael, 126
folding, 187
folklore, 16–17, 81, 116
forces, balanced and unbalanced, 219–220, 227
fossils, 301–304
dating, 309–310
as evidence of asteroid impact, 290–311
excavating, 292–295
formation of, 301
identification chart, 293–295
modeling, 299–300
relative age of, 295–298
Frisius, Gemma, 86
From the Earth to the Moon (Verne), 321
full moon, 69
2001 dates, 77
eclipse of, 76, 78–79
tidal effect of, 257
G
Gagarin, Yuri, 137
galaxies, 20
Milky Way, 20–21, 338–339
Galeras Volcano, 177
Galileo, 11, 102, 113–117, 210
Galileo space probe, 115, 143, 210–214, 273, 278
Ganymede (moon), 114, 187, 214
Gaspra (asteroid), 162, 270, 272, 273
gastropod, 293
Gemini Project, 139, 329
globe
analyzing Earth’s rotation with, 34–35
investigating seasons with, 45–49
Goddard Space Flight Center, 338
Goldsmid, Johann, 116
Graham, George, 152
Grand Canyon (Arizona), 178, 185
gravitational pull, 207–209, 227, 228, 255–259
gravity, 6, 226–231
micro-, 127
and orbital motion, 216–243
solar, 97
geology
of Earth, 144, 309–311
of Moon, 144–145, 167, 310–311
glazers, 284, 318
glasses red and blue, 169, 183, 186, 187, 189
solar viewing, 38–39, 107
Global Positioning System, 59
global warming, 318
geosphere, 282
Giordano Bruno crater (Moon), 277
plastic moon, 68–69
Goddard Space Flight Center, 338
Goldsmid, Johann, 116
Graham, George, 152
Grand Canyon (Arizona), 178, 185
gravitational pull, 207–209, 227, 228, 255–259
glazers, 284, 318
glasses red and blue, 169, 183, 186, 187, 189
solar viewing, 38–39, 107
Global Positioning System, 59
global warming, 318
globe analyzing Earth’s rotation with, 34–35
investigating seasons with, 45–49
Goddard Space Flight Center, 338
Goldsmid, Johann, 116
Graham, George, 152
Grand Canyon (Arizona), 178, 185
gravitational pull, 207–209, 227, 228, 255–259
glazers, 284, 318
glasses red and blue, 169, 183, 186, 187, 189
solar viewing, 38–39, 107
Global Positioning System, 59
global warming, 318
and star wobble, 223
surface (See surface gravity)
and tides, 244–265
gravity factor, 209
Great Dark Spot (Neptune), 238
Great Red Spot (Jupiter), 114, 212–213
Greeks, ancient, 10, 16
greenhouse effect, 101, 171, 284, 312
greenhouse gas, 317–318
Habbal, Shadia, 95–97
Habitable Planets for Man (Dole and Asimov), 319–320
hairy stars, 10
Hale, Alan, 268
Halley, Edmund, 289
Halley’s comet, 41, 289
Herriot, Thomas, 116
Hoffman, Jeffrey, 262
Holnis, Jan M., 338
Hubble Space Telescope, 2, 9, 143, 260–264, 276
hydrogen, 98–99
hydrosphere, 282
I
Ia, 16
ice ages, 118, 316–317
ice caps
Earth, 281, 284
Mars, 191–193, 198
Moon, 338
Pluto, 264
Ida (asteroid), 162, 270, 272, 273
impact craters,
160–173, 187. See also specific crater
Earth, 160–161, 167–169, 290, 308
formation of,
165–167, 270–271
Mars, 186
Mercury, 158, 161, 167
Moon, 144–145, 162, 167, 169, 277
parts of, 165
Pluto, 264
Venus, 172
infrared lasers, 333
infrared radiation, 99, 101
infrared sensors, 331
International Astronomical Union (IAU), 289
International Space Station, 143
intertidal zone, 253
inverse square law, 92
Io (moon), 114, 189, 212, 214, 225, 258–259
iridium, 307, 308
J
Jackhammers, 329–330
Johnson Space Center (Texas), 70
Jovian planets, 162
Jupiter, 209–215
comet strike on, 277–279
formation of, 146
Great Red Spot, 114, 212–213
mass of, 209, 229
moons of, 11, 113–115, 162, 187, 189, 210, 212, 214, 228, 229, 258–259, 338 (See also specific moon)
orbital speed, 228
rings of, 211–212
space probe observations of, 210–214, 231
Voyager observations of, 2
K
Kennedy, John F., 138
Kennedy Space Center (Florida), 70, 143
Kepler, Johannes, 10
Kitt Peak National Observatory (Arizona), 59, 338
Kriegel, Kevin, 127
Kuat, 16
Kubasov, Valery, 143
Kuiper Belt, 264, 274
L
La Brea Tar Pits (California), 303
landers, 158, 194–195. See also specific spacecraft
landforms. See surface features; specific landform
lasers, infrared, 333
latitudes, different, seasonal variations at, 51–53
Law of Inertia, 227
Law of Universal Gravitation, 227–228
leap years, 15, 20
L’Engle, Madeleine, 321
Leo (constellation), 9
Leonov, Alexei, 143
Levy, David, 278
life on Earth, 315–320
in space, 337–339
light distance and, 92
surface area of, 92
lightning, on Jupiter, 212
Little Dipper (constellation), 58, 60
Lousma, Jack, 141
Lowell, Percival, 194
lunar craters, 144–145
lunar eclipses, 4, 74–87
definition of, 83
lunar phases, 4, 12, 20, 68–69
and eclipses, 76–79
folklore about, 16
investigating, 62–87
tidal effects of, 255–259
Lunar Prospector spacecraft, 280
lunar regolith, 145

M
Madagascar, 287
Magellan spacecraft, 172
magma, 189
magma ocean, 145
magnetic field
Earth, 97, 120–121
Mars, 198
Mercury, 158
Sun, 117, 119
Uranus, 237
magnetosphere, 97, 120–121
Malina (Sun god), 16
mammoths, woolly, 303, 317
Manicouagan Crater (Canada), 167
Marble Canyon (Arizona), 178
maria (Moon), 189
Mariner 4 spacecraft, 194
Mariner 9 spacecraft, 194
Mariner 10 spacecraft, 154–158
Mariner space probe, 143
Mars, 194–199, 209
atmosphere, 101, 182, 183, 193, 195–196
formation of, 146
human colonization of, 193, 198
invasion from, 323
orbital speed, 228
space probe exploration of, 183, 186, 191–198, 323, 333
surface of, 174, 182–187, 189, 191–196
tectonics on, 187
water erosion on, 185–186
water on, 191–193, 338
winds on, 182–183
Mars Global Surveyor spacecraft, 183, 191, 193, 194, 197–198
Mars Pathfinder spacecraft, 143, 194, 196
mass. See also planetary mass
investigating, 203–205
measuring, 206–207
versus weight, 206–209
mathematical equations, scaling
Sun-Moon-Earth system, 15
Mathilde (asteroid), 162
Mauna Kea, 163
Mercury, 154–159, 209
formation of, 146
orbital speed, 228
rotational period, 154, 157
surface gravity of, 209
surface of, 158, 161, 167
Mercury-Atlas rocket, 138
Mercury Project, 137
meteor(s), 10, 275
meteorites, 275
dating of, 309–311
meteoroids, 268, 275
meteor showers, 274
methane, 237, 284
metric system, 206–207
Mexico, 60, 290–291, 305–306, 308
Michel, Helen, 307
microgravity, 127
Milky Way galaxy, 20–21, 338–339
Mir space station, 126
Mission to Planet Earth. See Earth System Enterprise (ESE) modeling
curved space, 230
eclipses, 76–77
fossil molds and casts, 299–300
lunar phases, 67–69
planetary processes, 180–181
solar system, 146–159
space spinoff products, 327
Sun-Earth-Moon system, 14–15, 21
tectonics, 188
tides, 251
tilt of Earth’s axis, 43–44
volcanism, 190
water erosion, 186
wind, 183–184
winter and summer shadows, 31–33
molds (fossils), 301
modeling, 299–300
mollusks, fossil identification of, 293
moon(s)
Earth (See Moon [Earth’s])
Jupiter, 11, 113–115, 162, 187, 189, 210, 212, 214, 228, 229
Neptune, 238
orbit of, effect of planetary mass on, 207–208
Pluto, 262–264
Saturn, 187, 234
Uranus, 237
Moon (Earth’s). See also Sun-Earth-Moon system;
specific moon or planet or under lunar
ancient observations of, 10, 16, 20, 114
Apollo exploration of, 12, 70–73, 139–141, 144–145, 169, 323
astronomic observations of, 2
diameter of, 15, 18
distance from Earth to, 320
eclipse of (See lunar eclipses)
far side of, 162, 258–259
formation of, 18
geology of, 144–145, 167, 310–311
gravity on, 200, 209
impact craters on, 144–145, 162, 167, 169, 277
internal structure of, 144–145
myths about, 16–17
near side of, 258
orbit of, 18–20, 64, 225, 258
phases of (See lunar phases)
reflected light of, investigating, 64–66
rotation, 19
rotational period, 258
shape of, 258
tidal effects of, 255–259
volcanism on, 189
water on, 338
Moon Orbiter, 223–225
moonquakes, 258
Mo Ti, 85
Mt. Palomar Observatory (California), 278
Musgrave, Story, 262
mussels, 254
mythology, 16–17, 81, 116
N
naming, of celestial bodies, 289
National Aeronautics and Space Administration (NASA), 2, 97, 121, 137–143. See also specific probe or mission
Earth-observing program, 282–287
technology developed by, 324–333
navigation, celestial, 58–61
neap tides, 257
Neptune, 209, 231, 238–241
atmosphere, 238
formation of, 146
Great Dark Spot, 238
orbital speed, 228
radius of, 209
rings of, 238
space probe exploration of, 231
surface gravity of, 209
Voyager observations of, 2
Netherlands, 318
New Jersey, 303
new moon, 68
2001 dates, 77
solar eclipse with, 76, 78–79
tidal effect of, 257
Newton, Isaac, 226–228
newtons, 206
night-day cycle, 20, 56–57
ancient explanations of, 16–17
Nili Patera (Mars), 183
Nitrogen, 309–310
Nixon, Richard, 72
North Celestial Pole, 50, 53, 58, 60
Northern Hemisphere, seasons in, 42, 48–49, 53–54, 56
North Star, 61
navigating by, 58–60
observing, 50–53
nuclear fusion, 99
O
observatories. See specific observatory ancient, 22
ocean processes, 285
ocean tides. See tides
Olympus Mons (Mars), 189, 197
Oort Cloud, 274
Ophir Chasm (Mars), 174
orbit, 14, 19, 53. See also specific planet or object
moon’s, effect of planetary mass on, 207–208
orbital motion gravity and, 216–243
and star wobble, 223
orbital period, 225, 340
orbital speed, 223–225, 228
orbiters, 158
and star wobble, 223
Orion Nebula, 146
orrery, 152
ozone layer, 286–287
P
paleontologists, 292, 308
pancake domes, 189
Pandora (moon), 234
penumbra, 79–80, 82–84
petrograph, 41
photographs
asteroids, 273
Earth, 141, 281
Jupiter, 210, 212–213, 278–279
Mercury, 154–157
Moon, 71–72, 162, 258–259
Neptune, 238–240
Pluto, 262–264
Saturn, 232–235
Uranus, 236–237
Venus, 172, 189, 318
photosphere, 117
pinhole projectors, 38, 85–87
constructing, 87
Pioneer space probes, 143, 170–173, 210
Pioneer 10, 210
Pioneer 11, 210
Pioneer 12 Venus Orbiter, 170–171
Pioneer 13 Venus Multiprobe, 171
planet(s). See specific planet
observations of, 2, 10–11, 221–222
comparing, 312–323
formation of, 146, 339
gaseous (Jovian), 146, 162, 167
mass and weight on, 207–209
orbit, 6, 10
orbital speed of, 228
radius of, 209
seasons on, 57
solar energy on, 92, 101
surface gravity of, 209
temperatures on, 92, 100–101
terrestrial, 146
planetary facts
Earth, 288
Jupiter, 215
Mars, 199
Mercury, 159
Neptune, 241
Pluto, 265
Saturn, 241
Uranus, 241
Venus, 173
planetary mass, 207–209
effect on moon’s orbit, 223–225
and gravitational pull, 228
and life on Earth, 319
versus moon’s orbital period, 225, 340
Planetary Motion Model, 221–222
planetary processes. See tectonics; volcanism; water erosion; wind erosion investigating, 180–181
Planetary Process Photo Cards, 181
Planetary Society, 196
planetary travel brochures, 132–136, 314
planetary winds, 182
Planet Data Cards, 151, 202
plants, in space, 126–127
Pluto, 209, 260–265
exploration of, 143
ground of, 228
Hubble Space Telescope observations of, 260–264
moons of, 262–264
orbital speed, 228
telescopic images of, 2
points of light in night sky, 4, 9
ancient theories about, 10
polar ice caps. See ice caps
Polaris (North Star), 61
navigating by, 58–60
observing, 50–53
pollution detectors, 333
poster, Space Technology and Research (STAR), 325–327
presenting, 334–339
Project Apollo, 139–140, 144–145, 169, 323, 329
Project Apollo-Soyuz, 143
Project Gemini, 139, 329
projection
pinhole, 38, 85–87
of Sun’s image, 104–107
Project Mercury, 137
Prometheus (moon), 234
Ptolemy, Claudius, 10
Pu’u Ka Pele (Mauna Kea), 163
R
radiant energy. See solar energy
radiation, solar, 37, 54–55, 99
radiation zone, 117
radiometer, investigating solar energy with, 89–91, 93–94
radiometric dating, 309–310
radiotelescopes, 338–339
radius, of planets, 209
regolith, lunar, 145
Regulus (star), 9
revolution, 14, 19, 20, 53, 64
Ride, Sally, 130
rock(s)
dating of, 309–310
Moon, 144–145, 310–311
rocket(s)
Mercury-Atlas, 138
V2, 137
rocket planes,
winged, 137
Rohatgi, Deepti, 196
rotation, 14, 19, 20, 54, 64. See also specific object
rotational period
Earth, 4, 20, 56, 320
Mercury, 154, 157
Moon, 258
Sun, 117
Venus, 183
rovers, 196
S
San Andreas Fault, 179
sand dunes, on Mars, 183
satellites. See also moon(s); specific moon or planet first, 137
navigating with, 59
orbital motion of, 216
Solar and Heliospheric Observatory (SOHO), 9
Saturn, 208–209, 231–235, 241
formation of, 146
moons of, 187, 234
orbital speed, 228
radiant energy on, 92
rings of, 232–235
space probe exploration of, 231–235
Voyager observations of, 2
Saturn V rocket, 70
scale factor, using, 148–149
scaling, Sun-Earth-Moon system, 15, 18–21
Schiener, Christopher, 116
science fantasy, 321–323
science fiction, 321–323
scientific probes, 143.
See also specific probe
Sea of Tranquility (Mare Tranquillitatis), 71
seasons, 42–61. See also specific season
investigating, 45–49
on other planets, 57
variations at different latitudes, 51–53
sextants, 58
shadow cone, umbra and penumbra of, 79–80, 82–84
shadows. See eclipses analyzing, 24–26
computerized data, collecting, 27–30
modeling, 31–33
tracking, 22–41
shadow sticks, 23–26, 31–33
analyzing Earth’s rotation with, 34–35
shark tooth, 293, 304
Shepherd, Alan, 137
shield volcanoes, 189
Shoemaker, Carolyn, 278, 280
Shoemaker, Eugene, 278, 280
shooting stars, 10
Sif Mons (Venus), 189
Sirius (star), 289
Skylab space station, 140–142
skywatching, 9–10, 40–41
Slayton, Donald, 143
Smithsonian Astrophysical Observatory, 95
Sojourner rover, 196
Solar and Heliospheric Observatory (SOHO), 9
solar corona, 96–97, 117
solar eclipses, 4, 38, 74–87
annular, 76–77, 80, 82–83, 86
definition of, 81
investigating, 76–77
partial, 76–80, 82, 97
studying solar wind with, 95–97
total, 76–80, 82, 95–97
types of, 81–82
viewing, 85–87
solar energy, 26, 88–101
dispersal of, 92
effects of, 90–91
on other planets, 92, 101
source of, 98–101
solar flares, 109
solar gravity, 97
solar maximum, 121
solar noon, 26
solar radiation, 37, 54–55, 99
solar storms, 120–121
solar system, 9, 21.
See also Sun or specific planet age of, 309–311, 339
ancient observations of, 10–11, 16–17, 113–115
assessment, 340–343
details of, importance of, 319–320
mechanical model of, 152
scale model of, 147–148, 150–151
solar viewing glasses, 38–39, 107
solar wind, 96, 109, 120
using eclipses to study, 95–97
solstice
summer, 22, 40, 56
winter, 40, 56
South Celestial Pole, 50, 53
Southern Hemisphere, seasons in, 42, 48–49, 53, 56
South Star, 50
Soviet Union, space exploration by, 126, 137, 143
Soyuz 19, 143
space
curved, theory of, 230
our ideas about, 4–8
spacecraft. See space probes; space shuttle; space station; specific craft
space exploration
Anchor Activity, 130–136
history of, 137–143
space probes, 143. See also specific probe
space shuttle, 127, 130, 142–143, 260
space spinoff products, 324–333
space stations, 126, 141
spacesuits, 71, 324, 332
space technology, 324–333
Space Technology and Research (STAR) poster, 325–327, 334–339
space walks, 139, 141, 143
space weather, 102, 109, 110
spring, 42, 56–57
spring equinox, 40
spring scale, 203–204, 206–207
spring tides, 257
Sputnik 1 satellite, 137
Stafford, Thomas, 143
Starry Night Backyard (software), 50–51, 217
stars. See specific star
classification of, 10
naming of, 289
steering by, 58–61
wobbling of, 223
Stonehenge, 22
stratocumulus clouds, 282
Sumeria, 154
summer, 42, 49, 56–57
summer shadows, 31–33
summer solstice, 22, 40, 56
Sun, 9, 20–21. See also under solar;
Sun-Earth-Moon system
ancient observations of, 40–41, 102, 114–115
astronomical observation of, 9
convection zone, 117
diameter of, 15, 21
distance from Earth, 21, 219
eclipse of (See solar eclipses)
as energy source (See solar energy)
formation of, 339
gallery of, 227, 228
layers of, 117
magnetic field, 117, 119
path of, 34–35
and seasons, 31–33, 51–57
projecting images of, 38, 85–87, 104–107
rotational period, 117
tidal effects of, 256, 257
viewing safely, 23, 36–39, 85–87, 103
Sun, Earth, Moon (video), 75, 245
Sun-Earth-Moon (SEM) Board, 24–26
investigating lunar phases with, 64–66
investigating seasons with, 45–49
investigating sunspots with, 104–107
modeling eclipses with, 76–80
modeling shadows with, 31–33
modeling tides with, 251–252
Sun-Earth-Moon system, 12–21
assessment, 122–127
gallery of, 20, 64
during eclipses, 78–81, 83
tides, 256–257
scaling, 15, 18–21
sun filters, 38
sunrise times, 51–52
Sunsanoo, 17
sunset times, 51–52
Supernova, 41
surface area of light, 92
surface features, 4–6, 174–199. See also specific feature
Earth, 174, 176–179
A Swiftly Tilting Planet (L'Engle), 321
Syrtis Major (Mars), 183

T

tectonics, 180–181, 185, 187–188
telescopes
ancient, 11, 113, 116, 210
Hubble Space, 2, 9, 143, 260–264, 276
in sextants, 58
viewing star wobble with, 223
viewing Sun with, 38, 113, 116
temperatures
extreme, faults caused by, 187

Triton (moon), 240
Truth, Sojourner, 196
U
ultraviolet radiation, 99, 287
umbra, 79–80, 82, 84
University of California at Berkeley, 307
University of Maryland, 289
University of Wisconsin–Madison, 311
Uranus, 209, 231, 236–237, 241
formation of, 146
moons of, 237
orbital speed, 228
rings of, 236, 237
seasons on, 57
space probe exploration of, 2
V
Valles Marineris (Mars), 174, 185
Valley, John, 311
Vedra Valles (Mars), 186
Venus, 170–173, 208–209
atmosphere, 101, 171, 182, 183
climate, 101, 317–318
volcanism, 180–181, 189–190
Earth, 177
Io (moon), 212, 258–259
Mercury, 158
Moon, 145, 189
Triton (moon), 240
Voyager space probes, 143, 210–212, 231–240
V2 rockets, 137

W
wandering stars, 10
waning crescent moon, 62, 69
waning gibbous moon, 69
War of the Worlds (Wells), 323
water. See also ice caps
on Mars, 191-193, 338
water erosion, 180-181, 185-186
waxing crescent moon, 68
waxing gibbous moon, 68
weather. See also atmosphere; climate
Earth, 100-101
Mars, 198
Neptune, 238-240
on other planets, 101
space, 102, 109, 110
weight, 203-208
versus mass, 206-209
Wells, H.G., 323
Wild, P., 289
Wilde, Simon, 311
Williams, Paul, 126-127
wind
Jupiter, 211
Mars, 183
modeling, 183-184
Neptune, 240
planetary, 182
solar, 95-97, 109, 120
Venus, 183
wind erosion, 180-184
winter, 42, 49, 56-57
winter shadows, modeling, 31-33
winter solstice, 40, 56
Wisconsin Fast Plants, 126
wobble method, 223
wood, petrified, 301
A Wrinkle in Time (L’Engle), 321
Y
year
leap, 15, 20
length of, 4, 20
Photo Credits

Front Cover Image courtesy of National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, compiled by Reto Stockli, NASA Earth Observatory. Data and technical support provided by the MODIS Science Team.

Part 1: Sun-Earth-Moon System xviii–1 Courtesy of Carol O’Donnell/© NSRC 2 National Aeronautics and Space Administration/Jet Propulsion Laboratory 4 (left) © Roger Resmeyer/Corbis (right) National Aeronautics and Space Administration/Johnson Space Center 6 United States Geological Survey/Hawaiian Volcano Observatory 7 Brian McLeod 10 © 1993 The British Library 12 National Aeronautics and Space Administration 16 Smithsonian Institution, National Anthropological Archives 17 V & A Picture Library 22 English Heritage 36 National Oceanic and Atmospheric Administration (NOAA) Photo Library/NOAA Central Library 38 © Jonathan Blair/Corbis 39 © Reuters Newmedia Inc./Corbis 40 Chaco Archive/National Park Service 41 (top) Chaco Archive/National Park Service, Photographer: Fred Mang (bottom) Chaco Culture National Historical Park/National Park Service 42 National Oceanic and Atmospheric Administration (NOAA) Photo Library/NOAA Central Library 57 © 1997-2000 by Calvin J. Hamilton 59 National Optical Astronomy Observatory/Association of Universities for Research in Astronomy/National Science Foundation 62 Corbis/Royalty-Free 68 (all) Courtesy UCO/Lick Observatory 69 (all) Courtesy UCO/Lick Observatory 70 National Aeronautics and Space Administration/Johnson Space Center 71 (top) National Aeronautics and Space Administration/Johnson Space Center (bottom) National Aeronautics and Space Administration 72 National Aeronautics and Space Administration 73 National Aeronautics and Space Administration 74 Bill Livingston/National Optical Astronomy Observatory/Association of Universities for Research in Astronomy/National Science Foundation 83 Dennis di Cicco/Sky & Telescope 84 (all) National Aeronautics and Space Administration/Kennedy Space Center 86 Jim Zimbelman 88 National Oceanic and Atmospheric Administration (NOAA) Photo Library/NOAA Central Library 95 Harvard Smithsonian Center for Astrophysics 96 National Center for Atmospheric Research/University Corporation for Atmospheric Research/National Science Foundation 97 Courtesy of Steele Hill and SOHO. SOHO is a project of international cooperation between ESA (European Space Agency) and National Aeronautics and Space Administration. 98 National Aeronautics and Space Administration 101 National Space Science Data Center/Goddard Space Flight Center 102 Courtesy of SOHO/MDI (Michelson Doppler Image) Consortium. SOHO is a project of international cooperation between ESA (European Space Agency) and National Aeronautics and Space Administration. 106 Courtesy of Carol O’Donnell/© NSRC 107 Ana Morris 108 All Photos Courtesy of SOHO/MDI (Michelson Doppler Image) Consortium. SOHO is a project of international cooperation between ESA (European Space Agency) and National Aeronautics and Space Administration. 113 Scala/Art Resource, New York 114 National Aeronautics and Space Administration/Jet Propulsion Laboratory 115 National Aeronautics and Space Administration/Johnson Space Center 116 Smithsonian Institution Libraries, Dibner Library of History of Science and Technology 118 Erich Lessing, Art Resource, New York 119 Image 235116, 1929, Forest Service Photograph Collection, Special Collections, National Agricultural Library 120 Jan Curtis, Geophysical Institute, University of Alaska Fairbanks 121 (top) Courtesy of SOHO. SOHO is a project of international cooperation between ESA (European Space Agency) and National Aeronautics and Space Administration. (center) © Dick Hutchinson (bottom) Courtesy of David Miller, National Geophysical Data Center 122 Jeff McAdams, Photographer, Courtesy of Carolina Biological Supply Company 126 Courtesy of Wisconsin Fast Plants 127 (both) National Aeronautics and Space Administration
Photo Credits

Part 2: Solar System

128-129 Jeff McAdams, Photographer, Courtesy of Carolina Biological Supply Company
130 National Aeronautics and Space Administration/Johnson Space Center
135 (all) Jeff McAdams, Photographer, Courtesy of Carolina Biological Supply Company
136 Jeff McAdams, Photographer, Courtesy of Carolina Biological Supply Company
137 © Bettmann/Corbis
138 National Aeronautics and Space Administration
140-141 National Aeronautics and Space Administration/Johnson Space Center
146 National Aeronautics and Space Administration
152 Smithsonian photo by Eric Long, © 1993, Smithsonian Institution
153 Smithsonian photo by Alfred Harrell, © 1992 Smithsonian Institution
154-155 National Aeronautics and Space Administration
156 National Aeronautics and Space Administration. Image processing by United States Geological Survey.
158 (left) National Aeronautics and Space Administration/Johnson Space Center
161 (top) National Aeronautics and Space Administration/Johnson Space Center/Propulsion Laboratory (right)
162 (top left) National Aeronautics and Space Administration
163 (top right) National Aeronautics and Space Administration/Johnson Space Center
166 (top) National Aeronautics and Space Administration
167 National Aeronautics and Space Administration
170 National Aeronautics and Space Administration
171 National Aeronautics and Space Administration
172 (all) National Aeronautics and Space Administration/Johnson Space Center
174 National Aeronautics and Space Administration. Image processing by United States Geological Survey
176 R.L. Shuster, United States Geological Survey
177 (top) © Brian A. Vikander/Corbis (bottom)
178 National Aeronautics and Space Administration/Johnson Space Center
179 R.E. Wallace, United States Geological Survey
182 National Aeronautics and Space Administration, Viking orbiter image
183 National Aeronautics and Space Administration/Jet Propulsion Laboratory/Malin Space Science Systems
185 National Aeronautics and Space Administration. Image processing by United States Geological Survey
186 © Lunar and Planetary Institute, 2000
187 (top) © Lunar and Planetary Institute, 2000
189 © Lunar and Planetary Institute, 2000
191 National Aeronautics and Space Administration/Jet Propulsion Laboratory
192 National Aeronautics and Space Administration/Jet Propulsion Laboratory/Malin Space Science Systems
193 National Aeronautics and Space Administration/Jet Propulsion Laboratory/Northwestern University
194 National Aeronautics and Space Administration/Johnson Space Center
195 National Aeronautics and Space Administration/Jet Propulsion Laboratory
196 National Aeronautics and Space Administration/Jet Propulsion Laboratory
197 National Aeronautics and Space Administration/Jet Propulsion Laboratory
198 National Aeronautics and Space Administration/Jet Propulsion Laboratory/Malin Space Science Systems
200 National Aeronautics and Space Administration/Johnson Space Center
202 Courtesy of Carol O’Donnell/© NSRC
210 National Aeronautics and Space Administration/Johnson Space Center
211 National Aeronautics and Space Administration/Jet Propulsion Laboratory
212-213 National Aeronautics and Space Administration/Jet Propulsion Laboratory
214 National Aeronautics and Space Administration/Jet Propulsion Laboratory
216 National Aeronautics and Space Administration/Jet Propulsion Laboratory
229 National Aeronautics and Space Administration/Jet Propulsion Laboratory
231 National Aeronautics and Space Administration/Jet Propulsion Laboratory
232-233 National Aeronautics...