NATIONAL SCIENCE RESOURCES CENTER
The National Science Resources Center (NSRC) is operated by the Smithsonian Institution and the National Academies to improve the teaching of science in the nation’s schools. The NSRC disseminates information about exemplary teaching resources, develops curriculum materials, and conducts outreach programs of leadership development and technical assistance to help school districts implement inquiry-centered science programs.

SMITHSONIAN INSTITUTION
The Smithsonian Institution was created by act of Congress in 1846 “for the increase and diffusion of knowledge....” This independent federal establishment is the world’s largest museum complex and is responsible for public and scholarly activities, exhibitions, and research projects nationwide and overseas. Among the objectives of the Smithsonian is the application of its unique resources to enhance elementary and secondary education.

THE NATIONAL ACADEMIES
The National Academies are nonprofit organizations that provide independent advice to the nation on matters of science, technology, and medicine. The National Academies consist of four organizations: the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council. The National Academy of Sciences was created in 1863 by a congressional charter. Under this charter, the National Research Council was established in 1916, the National Academy of Engineering in 1964, and the Institute of Medicine in 1970.

STC/MS PROJECT SPONSORS
- National Science Foundation
- Bristol-Myers Squibb Foundation
- Dow Chemical Company
- DuPont Company
- Hewlett-Packard Company
- The Robert Wood Johnson Foundation
- Carolina Biological Supply Company
Catastrophic Events

Smithsonian/The National Academies
National Science Resources Center

Published by Carolina Biological Supply Company
Burlington, North Carolina
Catastrophic Events

MODULE DEVELOPMENT STAFF

Developer/ Writer
Carol O’Donnell

Science Advisors
Stan Doore, Meteorologist (retired)
National Weather Service
National Oceanic and Atmospheric Administration

Ann Dorr, Earth Science Teacher (retired),
Fairfax County Public Schools, Virginia;
Board Member, Minerals Information Institute

Ian MacGregor, Director, Division of Earth Sciences
National Science Foundation

Grant Woodwell, Professor of Geology
Mary Washington College

Thomas Wright, Geologist,
National Museum of Natural History,
Smithsonian Institution;
U.S. Geological Survey (emeritus)

Editor
Judith Grumstrup-Scott

Contributing Writer
Elaine Friebel

Illustrators
John Norton
Max-Karl Winkler

Photographic Research
Matthew Bailey
PhotoAssist, Inc.

Design Consultation
Isely &/or Clark Design

STC/MS Project Staff

Principal Investigators
Douglas Lapp, Executive Director, NSRC
Sally Goetz Shuler, Deputy Director, NSRC

Project Director
Kitty Lou Smith

Curriculum Developers
David Marsland
Henry Milne
Carol O’Donnell
Dane J. Toler

Illustration Coordinator
Max-Karl Winkler

Photo Editor
Janice Campion

Graphic Designer
Heidi M. Kupke

Administrative Officer
Gail Thomas

Program Assistants
Matthew Bailey
Carolyn Hanson

Publications Assistant
Famin Ahmed

Managing Editor
Dorothy Sawicki

Senior Editor
Linda Harteker
STC/MS Project Advisors

Judy Barille, Chemistry Teacher, Fairfax County Public Schools, Virginia
Steve Christiansen, Science Instructional Specialist, Montgomery County Public Schools, Maryland
John Collette, Director of Scientific Affairs (retired), DuPont Company
Cristine Creange, Biology Teacher, Fairfax County Public Schools, Virginia
Robert DeHaan, Professor of Physiology, Emory University Medical School
Stan Doore, Meteorologist (retired), National Weather Service, National Oceanic and Atmospheric Administration
Ann Dorr, Earth Science Teacher (retired), Fairfax County Public Schools, Virginia; Board Member, Minerals Information Institute
Yvonne Forsberg, Physiologist, Howard Hughes Medical Center
John Gastineau, Physics Consultant, Vernier Corporation
Patricia A. Hagan, Science Project Specialist, Montgomery County Public Schools, Maryland
Alfred Hall, Staff Associate, Eisenhower Regional Consortium at Appalachian Educational Laboratory
Connie Hames, Geology Teacher, Stafford County Public Schools, Virginia
Jayne Hart, Professor of Biology, George Mason University
Michelle Kipke, Director, Forum on Adolescence, Institute of Medicine
John Layman, Professor Emeritus of Physics, University of Maryland

Thomas Liao, Professor and Chair, Department of Technology and Society, State University of New York at Stony Brook
Ian MacGregor, Director, Division of Earth Sciences, National Science Foundation
Ed Mathews, Physical Science Teacher, Fairfax County Public Schools, Virginia
Ted Maxwell, Geomorphologist, National Air and Space Museum, Smithsonian Institution
Tom O’Haver, Professor of Chemistry/Science Education, University of Maryland
Robert Ridky, Professor of Geology, University of Maryland
Mary Alice Robinson, Science Teacher, Stafford County Public Schools, Virginia
Bob Ryan, Chief Meteorologist, WRC Channel 4, Washington, D.C.
Michael John Tinnesand, Head, K-12 Science, American Chemical Society
Grant Woodwell, Professor of Geology, Mary Washington College
Thomas Wright, Geologist, National Museum of Natural History, Smithsonian Institution; U.S. Geological Survey (emeritus)
Community leaders and state and local school officials across the country are recognizing the need to implement science education programs consistent with the National Science Education Standards to attain the important national goal of scientific literacy for all students in the 21st century. The Standards present a bold vision of science education. They identify what students at various levels should know and be able to do. They also emphasize the importance of transforming the science curriculum to enable students to engage actively in scientific inquiry as a way to develop conceptual understanding as well as problem-solving skills.

The development of effective standards-based, inquiry-centered curriculum materials is a key step in achieving scientific literacy. The National Science Resources Center (NSRC) has responded to this challenge through the Science and Technology Concepts for Middle Schools (STC/MS) program. Prior to the development of these materials, there were very few science curriculum resources for middle school students that embody scientific inquiry and hands-on learning. With the publication of the STC/MS modules, schools will have a rich set of curriculum resources to fill this need.

Since its founding in 1985, the NSRC has made many significant contributions to the goal of achieving scientific literacy for all students. In addition to developing the Science and Technology for Children (STC) program—an inquiry-centered science curriculum for grades K through 6—the NSRC has been active in disseminating information on science teaching resources, in preparing school district leaders to spearhead science education reform, and in providing technical assistance to school districts. These programs have had a significant impact on science education throughout the country.

The transformation of science education is a challenging task that will continue to require the kind of strategic thinking and insistence on excellence that the NSRC has demonstrated in all of its curriculum development and outreach programs. Its sponsoring organizations, the Smithsonian Institution and the National Academies, take great pride in the publication of this exciting new science program for middle schools.

J. Dennis O’Connor, Under Secretary for Science
Smithsonian Institution

Bruce M. Alberts, President
National Academy of Sciences
Preface

The National Science Resources Center (NSRC) is dedicated to the development, dissemination, and implementation of innovative, hands-on science education programs. After the completion of the Science and Technology for Children (STC) program for elementary schools, the NSRC launched in 1997 the Science and Technology Concepts for Middle Schools (STC/MS) project. The STC/MS program is designed to meet the challenge of the National Science Education Standards to place scientific inquiry at the core of science education programs.

The STC/MS program, which consists of eight instructional modules, is designed to provide students with stimulating experiences in the life, earth, and physical sciences and in technology while simultaneously developing their critical-thinking and problem-solving skills. The NSRC believes that the way to do this is to engage students in scientific inquiry. The National Science Education Standards state: “Students in grades 5–8 should be provided opportunities to engage in full and partial inquiries.... With an appropriate curriculum and adequate instruction, middle school students can develop the skills of investigation and the understanding that scientific inquiry is guided by knowledge, observations, ideas, and questions.”

Bruce Alberts, president of the National Academy of Sciences, reflects on the importance of teaching science through inquiry in the National Academies’ publication Inquiry and the National Science Education Standards: A Guide for Teaching and Learning:

Teaching science through inquiry allows students to conceptualize a question and then seek possible explanations that respond to that question.... Inquiry is in part a state of mind—that of inquisitiveness. Most young children are naturally curious. They care enough to ask “why” and “how” questions. But if adults dismiss their incessant questions as silly and uninteresting, students can lose this gift of curiosity. Visit any second-grade classroom and you will generally find a class bursting with energy and excitement, where children are eager to make new observations and try to figure things out. What a contrast with many eighth-grade classes, where the students so often seem bored and disengaged from learning and from school!

The STC/MS modules developed by the NSRC keep inquiry at the center of the learning process to encourage student curiosity—even in eighth graders. And the materials are unique in a number of other ways. The NSRC has developed each module using a rigorous research and development process. The STC/MS activities have been developed through repetitive cycles of classroom testing, review, and improvement. This research and development process has included both trial teaching and field-testing nationwide, as well as the active involvement of many scientific experts from universities, museums, government agencies, and industry. The NSRC has also designed special apparatus for many of the activities and tested each piece of equipment to perfect the design. After field testing, the STC/MS developers continued to revise the
materials and apparatus, based on feedback from students, teachers, and experts.

The research and development process of the STC/MS curriculum involved a very productive collaboration of master teachers and scientists. Beginning with the conceptualization of each module, scientists have been involved, reviewing the conceptual structure and contributing to the learning activities in each module. Expert middle school science teachers have also worked with NSRC developers—master teachers themselves—to assess how students respond to the activities and to suggest ways to improve them. This collaboration, involving both scientists and expert teachers, has ensured that the learning activities in each module reflect current scientific thinking and are effective in the classroom. The involvement of such experts from the beginning has sparked creativity in the module development process and has added originality to every lesson.

Because this research and development process is time-consuming and labor-intensive—and therefore expensive—it is not surprising that few traditional science textbooks have been developed this way. The NSRC has received major support from the National Science Foundation and from many corporate and philanthropic foundations to develop the STC/MS program.

Thus, three unique factors—keeping inquiry at the center of each lesson, following a rigorous research and development process, and engaging the active collaboration of scientists and expert teachers—have characterized the development of the STC/MS program. This process has enabled the NSRC to produce a focused, inquiry-centered curriculum for middle schools that actively engages students in learning new science and technology concepts, while building critical-thinking and problem-solving skills that will be useful to them throughout their adult lives.

The NSRC is grateful to Kitty Lou Smith, STC/MS Project Director, for her tireless efforts and creative leadership of this project. Working in partnership with Managing Editor Dorothy Sawicki, Dr. Smith has guided her staff through all the phases of the arduous research and development process that has led to the publication of the STC/MS program modules.

We would also like to thank the NSRC’s parent institutions, the Smithsonian Institution and the National Academies, for their vision and support in helping the NSRC to undertake this project. We look forward to hearing from teachers regarding their classroom experience with the STC/MS modules, together with any suggestions they may have for improvements.*

DOUGLAS M. LAPP
Executive Director
National Science Resources Center

*Suggestions and feedback can be sent by e-mail to: stcms@nas.edu, or mailed to: STC/MS Program, National Science Resources Center, Smithsonian Institution, Washington DC 20560-0403.
Acknowledgments

The National Science Resources Center gratefully acknowledges the following individuals and school systems for their assistance with the national field-testing of Catastrophic Events:

East Bay Educational Collaborative, Rhode Island
Site Coordinator: Ronald D. DeFronzo, Science Specialist, East Bay Educational Collaborative, Director, Kits in Teaching Elementary Science, Portsmouth
Michael J. Brennan, Teacher, Portsmouth Middle School, Portsmouth
Mary J. Hayes, Teacher, Thompson Middle School, Newport
Donna Stouber, Teacher, Kickemuit Middle School, Warren

School District of Greenville County, Greenville, South Carolina
Site Coordinator: Toni Enloe, Teaching and Learning Division
Elayne R. Finkelstein, Teacher, League Academy
Robbie L. Higdon, Teacher, League Academy
Mary Helen Maxwell, Teacher, League Academy

Minneapolis Public Schools, Minneapolis, Minnesota
Site Coordinator: James Bickel, Teacher Instructional Service
Ann Ginis, Teacher, Benjamin Banneker Community School
Michael Madden, Teacher, Anne Sullivan Communication Center
Holly C. Thompson, Teacher, Franklin Middle School

Montgomery County Public Schools, Montgomery County, Maryland
Site Coordinator: Patricia A. Hagan, Middle School Science Specialist
Theresa Manley Sykes, Science Resource Teacher, White Oak Middle School

School District of Philadelphia, Philadelphia, Pennsylvania
Site Coordinator: Allen Ruby, Research/Curriculum Specialist, Talent Development Schools, Center for Social Organization of Schools, Johns Hopkins University
Deborah Bambino, Teacher, Central East Middle Annex
Jacqueline Dubin, Teacher, Jay Cooke Middle School
Donald L. Rissover, Teacher, Beeber Middle School

Redwood City School District, Redwood City, California
Site Coordinator: Dorothy Patzia, Science Resource Teacher, Bay Area Schools for Excellence in Education (BASEE)
Anne Renoir, Teacher, Garfield Charter Middle School, Menlo Park
Sandra Robins, Teacher, Hoover Math & Tech Magnet, Redwood City
Bobbie Stumbaugh, Teacher, Selby Lane School, Atherton

Stafford County Public Schools, Stafford County, Virginia
Site Coordinator: Barry Mathson, Science Coordinator
Jan Pierson, Teacher, Gayle Middle School
Winston Ward, Principal, Gayle Middle School
Michael Wondree, Assistant Principal, Gayle Middle School
The NSRC thanks the following individuals for their assistance during the development of Catastrophic Events:

Jody Hayob, Geology Professor, Mary Washington College, Fredericksburg, Virginia

Maureen Kerr, Educational Services Manager, National Air and Space Museum, Educational Services, Smithsonian Institution, Washington, D.C.

Fred Klein, Seismologist, U.S. Geological Survey, Menlo Park, California

James F. Luhr, Curator, Global Volcanism Project, National Museum of Natural History, Smithsonian Institution, Washington, D.C.

Steven Mabry, Electronics Engineer, Technology Management Group, Inc., Dahlgren, Virginia

Amanda May, Teacher, Mountain View Elementary, Haymarket, Virginia

Charles J. Pitts, Electrical Engineer, Science Application International Corporation, McLean, Virginia

Dennis Schatz, Associate Director, Pacific Science Center, Seattle, Washington

Tom Simkin, Curator, National Museum of Natural History, Smithsonian Institution, Washington, D.C.

Rose Steinet, Photo Librarian, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D.C.

Penny Sullivan, American Rescue Dog Association, New York, New York

Terry Teays, Manager of Education Group, Origins Education Forum Scientist, Space Telescope Science Institute, Baltimore, Maryland

Tim Watts, Teacher, Chemistry and Marine Science, Courtland High School, Spotsylvania County Public Schools, Spotsylvania, Virginia

The NSRC also thanks the following individuals from Carolina Biological Supply Company for their contribution to the development of this module—

Helen Kreuzer, Director of Product Development

Bobby Mize, Instructional Materials Manager

E. Alan Scott, Product Manager, Osteology and Earth/Space Science Division

David Heller, Product Developer

David Middendorf, Head, Media Services

Jennifer Manske, Publications Manager

Jonathan Shectman, Editor

Finally, the NSRC appreciates the contribution of its STC/MS project evaluation consultants—

Program Evaluation Research Group (PERG), Lesley College

Sabra Lee, Researcher, PERG

George Hein, Director (retired), PERG

Center for the Study of Testing, Evaluation, and Education Policy (CSTEEP), Boston College

Joseph Pedulla, Director, CSTEEP

Maryellen Harmon, Director (retired), CSTEEP
Contents

Part 1 Storms

Lesson 1 Thinking About Catastrophic Events
- Inquiry 1.1 Creating a Group Concept Map
- Inquiry 1.2 Using a Globe and a World Map
- Images of the Earth
- How Scientists Study the Earth
- Views From Space

Lesson 2 Introducing Storms
- Inquiry 2.1 Modeling a Vortex
- Tornado Watch or Warning?
- What Is a Vortex?
- That’s a Fact: An Introduction to Thunderstorms, Tornadoes, and Hurricanes

Lesson 3 Heating Earth’s Surfaces
- Inquiry 3.1 Investigating Rates of Heating and Cooling
- Weather Versus Climate
- The Source of Earth’s Heat
- The Atmosphere: A Blanket of Air
- Joseph Henry: The Father of Weather Forecasting

Lesson 4 Heat Transfer and the Movement of Air
- Inquiry 4.1 Investigating the Temperature of Air
- Inquiry 4.2 Investigating How Warm Air and Cool Air Move
- Air Masses
- What’s the Forecast?
- Weather Forecasting Can Be Cool… or Hot!

Lesson 5 Convection Currents in the Air
- Inquiry 5.1 Investigating the Effects of Colliding Air Masses
- Why Does the Wind Blow?
- What Are Monsoons?
- Weather Fronts
- Trouble in Tornado Alley
- Waterspouts
- Staying Safe

STC/MS™ Catastrophic Events xiii
<table>
<thead>
<tr>
<th>Lesson 6</th>
<th>Temperature, Pressure, and Cloud Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inq. 6.1</td>
<td>Observing Evaporation and Condensation</td>
</tr>
<tr>
<td></td>
<td>Hurricane Formation and the Water Cycle</td>
</tr>
<tr>
<td>Inq. 6.2</td>
<td>Modeling the Effects of Air Pressure on Cloud Formation</td>
</tr>
<tr>
<td>Inq. 6.3</td>
<td>Reading Weather Maps</td>
</tr>
<tr>
<td></td>
<td>The Truth About Air</td>
</tr>
<tr>
<td></td>
<td>Torricelli: Inventor of the Mercury Barometer</td>
</tr>
<tr>
<td></td>
<td>Hurricane Mitch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 7</th>
<th>Ocean Currents and Global Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inq. 7.1</td>
<td>Investigating the Effect of Temperature on Ocean Currents</td>
</tr>
<tr>
<td></td>
<td>Ocean Currents</td>
</tr>
<tr>
<td></td>
<td>How Trade Winds Cause Upwelling</td>
</tr>
<tr>
<td>Inq. 7.2</td>
<td>Investigating Surface Currents</td>
</tr>
<tr>
<td></td>
<td>Surface Currents</td>
</tr>
<tr>
<td></td>
<td>El Niño Stirs Up the World’s Weather</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 8</th>
<th>Storms Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>About Earthquakes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 9</th>
<th>Exploring Risks Through an Anchor Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introducing the Anchor Activity</td>
</tr>
<tr>
<td></td>
<td>Anchor Activity Guidelines</td>
</tr>
<tr>
<td></td>
<td>The Big Thompson Flood</td>
</tr>
<tr>
<td></td>
<td>What Is a Flash Flood?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2</th>
<th>Earthquakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 10</td>
<td>Introducing Earthquakes</td>
</tr>
<tr>
<td>Inq. 10.1</td>
<td>Thinking About Earthquakes</td>
</tr>
<tr>
<td></td>
<td>What Is an Earthquake?</td>
</tr>
<tr>
<td></td>
<td>Myths About Earthquakes</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Lesson 11</th>
<th>When the Earth Shakes</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 11.1</td>
<td>Testing the Motion of Waves</td>
<td>122</td>
</tr>
<tr>
<td>Inquiry 11.2</td>
<td>Designing and Building an Earthquake-Resistant House</td>
<td>128</td>
</tr>
<tr>
<td>Designing Earthquake-Resistant Buildings</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 12</th>
<th>Recording Earthquake Waves</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Brief History of Earthquake Detection</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Inquiry 12.1</td>
<td>Recording Vibrations</td>
<td>137</td>
</tr>
<tr>
<td>Inquiry 12.2</td>
<td>Reading a Seismogram</td>
<td>142</td>
</tr>
<tr>
<td>The Alaska Earthquake of 1964</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Finding an Epicenter: The Tortoise and the Hare</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Inquiry 12.3</td>
<td>Locating the Epicenter of an Earthquake</td>
<td>148</td>
</tr>
<tr>
<td>Canines to the Rescue</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 13</th>
<th>Plotting Earthquakes</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 13.1</td>
<td>Plotting Earthquakes To Identify Patterns</td>
<td>156</td>
</tr>
<tr>
<td>Magnitude & Intensity</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Using Historical Earthquake Intensity To Estimate Future Risk</td>
<td>162</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 14</th>
<th>Using Earthquakes To Study the Earth’s Interior</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 14.1</td>
<td>Examining the Earth’s Interior</td>
<td>166</td>
</tr>
<tr>
<td>The Earth’s Interior</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Using Waves To Explore the Earth’s Interior</td>
<td>168</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 15</th>
<th>Investigating Plate Movement and Faults</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 15.1</td>
<td>Using a Simple Model of Plate Movement</td>
<td>172</td>
</tr>
<tr>
<td>Colliding, Sliding, and Separating Plates</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Inquiry 15.2</td>
<td>Using the Moving Plates Model</td>
<td>176</td>
</tr>
<tr>
<td>Inquiry 15.3</td>
<td>Investigating Faults With Models</td>
<td>179</td>
</tr>
<tr>
<td>Earthquakes and Faults</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Earth’s Moving Plates: A Look Back</td>
<td>186</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 16</th>
<th>Convection in the Mantle</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry 16.1</td>
<td>Modeling Convection in the Mantle</td>
<td>192</td>
</tr>
</tbody>
</table>

| Lesson 17 | Earthquakes Assessment | 194 |
Part 3 Volcanoes

Lesson 18 Introducing Volcanoes
Inquiry 18.1 Thinking About Volcanoes
Volcanoes: Help or Hindrance? 200

Lesson 19 Volcanoes Change the Landscape
Inquiry 19.1 Investigating Magma and New Landforms
Inquiry 19.2 Investigating Lava and New Landforms
An Island Is Born
Volcanologists Talk About Their Work 206

Lesson 20 Viscosity and Volcano Types
Inquiry 20.1 Investigating Viscosity and Volcano Type
Volcano Types 210

Lesson 21 Igneous Rock
Inquiry 21.1 Observing Igneous Rock
Volcanoes: Roaring Demons, Raging Giants 217

Lesson 22 Exploring Igneous Rock Formation
Inquiry 22.1 Investigating Crystallization
Earth’s Waterworks
Earthquake Predictor?
The Rock Cycle 222

Lesson 23 Volcanic Ash
Inquiry 23.1 Investigating the Properties of Volcanic Ash
Mt. St. Helens Erupts 224

Lesson 24 Effects of Ash Fall
Inquiry 24.1 Investigating Ash Fall
Volcano in a Cornfield 234

Lesson 25 Volcanoes Assessment
The Volcano Lovers 240
Glossary 283
Index 289
Photo Credits and Selected References 295